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Abstract

We propose a novel target attention network
(TAN) to identify the sentiment of opinion tar-
gets in a review or a twitter. Unlike previous
works which represent the target in an aver-
aging manner, we apply target attention to fo-
cus on more relevant parts of the target, which
shows benefits for later sentiment classifica-
tion. We also introduce a novel target-aware
position embedding, which directly models the
location relation between the target and its
context to provide distinct information from
semantic meanings for sequence encoder. Ex-
tensive experiments demonstrate the robust-
ness of our findings. The experimental re-
sults show that our model consistently out-
performs the state-of-the-art methods on four
public benchmarks.

1 Introduction

Targeted sentiment analysis is an entity-level sen-
timent analysis, which aims to identify the senti-
ment polarity of specific opinion targets in a sen-
tence. For example, in sentence “The price is rea-
sonable although the food quality is poor.”, the
sentiment polarity of target “price” is positive,
while the sentiment polarity of target “food qual-
ity” is negative. An important issue in targeted
sentiment analysis is to model the complicated in-
teraction between a target and its context, which
can involve syntactic structures and semantic in-
tentions such as negations, intensities, and even
sarcasm. In the former example, context “reason-
able” has higher distinguishability to identify the
sentiment polarity for target “price”.

Some earlier works (Dong et al., 2014; Tang
et al., 2016a; Zhang et al., 2016) use neural net-
works to encode a sequence. Such models may
suffer poor performance when informative context
words are far from the target, causing useful infor-
mation to vanish after the long sequence encoding

process. Some works (Tang et al., 2016b; Yang
et al., 2017; Liu and Zhang, 2017; Ma et al., 2017;
Chen et al., 2017) mitigate this problem by apply-
ing attention mechanism to focus on more related
parts of the sequence. The common idea is to av-
erage embeddings over target words as the query,
traverse its context with the query, and count at-
tention weight for each context word.

The main flaw of these attention-based methods
is the target representation issue. Since a target can
contain multiple words, if you simply average all
target words, meaningful words in a target may be
diluted by a large number of meaningless words
especially for longer targets, which may lead to
poor attention results. We propose a novel tar-
get attention network to alleviate such problem.
We introduce two types of target attention to in-
tegrate all words in a target in non-linear ways,
rather than linear combination (average words) as
previous works do. We believe that a deliberate
representation of a target can boost performance.

We also find it beneficial to consider the posi-
tional information as input features. Even if con-
ventional sequence encoders such as RNN can
maintain the temporal order, the encoder knows
nothing about the location of the target so the di-
rect relation between the target and each context
word is hard to model. We introduce a novel
target-aware position embedding to represent the
location relation between a target and its context.
Combined with position embedding, the sequence
encoder can consider more comprehensive fea-
tures simultaneously during the encoding process.

We evaluate proposed approach on four public
datasets. The first two are restaurant and laptop
reviews from SemEval 2014 (Pontiki et al., 2014),
the remaining two are collected from twitter by
previous works (Dong et al., 2014; Zhang et al.,
2016). Extrinsic comparisons with previous works
demonstrate that our model outperforms all state-



of-the-art methods on all four datasets, no wonder
the dataset is well-structured (reviews) or highly
irregular (twitter). Intrinsic experiments show that
our models with target attention are consistently
superior than the ones without target attention, and
the results of target attention can make a signifi-
cant impact on later context attention. Experimen-
tal results also show that complex opinions for the
target can be captured with position embedding.

2 Related Work

Targeted sentiment analysis is a fine-grained clas-
sification task. It requires different solutions from
traditional sentiment analysis (Kim, 2014; Tang
et al., 2015; Zhang et al., 2015; Yang et al., 2016)
which predicts sentiment polarity for whole sen-
tence or whole document.

The earliest tries on targeted sentiment analy-
sis extract target-dependent features (Jiang et al.,
2011; Kiritchenko et al., 2014; Wagner et al.,
2014; Vo and Zhang, 2015), then use a classifier
such as SVM to predict sentiment. These features
need to be carefully designed by experts and ex-
ploit external resources like sentiment lexicons.

Neural networks based methods attract attention
for researchers because of the ability to extract fea-
tures automatically and learn complex represen-
tation from data. AdaRNN (Dong et al., 2014)
leverages dependency parsing tree and uses recur-
sive neural networks for targeted sentiment analy-
sis. TC-LSTM (Tang et al., 2016a) uses two sepa-
rate LSTMs to encode left and right context. Since
the sentiment may be dominated by either context,
GRNN (Zhang et al., 2016) uses a LSTM-like gate
mechanism to better concatenate both contexts.

However, the captured features are likely to be
lost when the the informative word is far from tar-
get (Cho et al., 2014; Chen et al., 2017). Attention-
based (Bahdanau et al., 2014; Hermann et al.,
2015; Xu et al., 2015; Chorowski et al., 2015;
Luong et al., 2015) and memory network (We-
ston et al., 2015; Sukhbaatar et al., 2015) based
methods can utilize history information to focus
on more related parts of the sequence. MemNet
(Tang et al., 2016b) executes multiple hops on
word embeddings, and focuses on different parts
at each hop. AB-LSTM (Yang et al., 2017) uses
dot product and bilinear term to count attention
weight. BILSTM-ATT-G (Liu and Zhang, 2017)
inherits the idea from GRNN, which uses gated
mechanism to concatenate attention productions

Figure 1: Calculating sequence representation in TAN.
{s1, ..., sT1 , ..., sTm , ..., sn} is the input sequence with
n words in length, {sT1

, ..., sTm
} is the target with m

words. {h1, ..., hT1
, ..., hTm

, ..., hn} are hidden states
of BiLSTM. We show FM style target attention here.

from both contexts. IAN (Ma et al., 2017) investi-
gates the interactions between a target and its con-
text, they use the average of the target and context
to count attention weights for each other. RAM
(Chen et al., 2017) is similar to MemNet, while
the memory here is the hidden states of a LSTM,
rather than word embeddings. They use a GRU to
execute multiple hops in memory networks.

3 Target Attention Network

In this section, we first give an overview of the
task. Afterwards, we will describe our lookup
methods for input features, sequence encoding
process, and how to apply attention on the target
and sequence. Finally, we will show the training
and inference processes. The overall architecture
of our system is shown in Figure 1.

Let’s assume the current input sequence is
seq = {s1, ..., sT1−1, sT1 , ..., sTm , sTm+1, ..., sn},
meaning the input sequence has nwords in length,
and the target T = {sT1 , ..., sTm} has m words in
length. The goal of the task is to predict the senti-
ment polarity of the target T toward sequence seq.
For example, in the sentence “The price is rea-
sonable although the food quality is poor.”, target
“price” has positive polarity, while the polarity of
target “food quality” is negative. Other than the
methods mentioned in the related work, we ex-
tract novel target-aware input features from seq,
and utilize novel target attention networks to fo-
cus on important parts of target T .



3.1 Target-Aware Input
Word Embedding. When dealing with natural
language processing tasks, it is helpful to use a
low-dimensional and continuous real-valued vec-
tor to represent each word (Mikolov et al., 2013;
Pennington et al., 2014). Let W e ∈ Rdw×|V |

be the word embedding lookup table, where dw
is the dimension of a word vector, and |V | is
the vocabulary size. For each input sequence
{s1, ..., sT1−1, sT1 , ..., sTm , sTm+1, ..., sn}, we
lookup W e, and return a word vector sequence
{w1, ..., wT1−1, wT1 , ..., wTm, wTm+1, ..., wn},
where wi is the word vector of si, and wi ∈ Rdw .
If the index of si in the vocabulary is idxi, we
can make an one-hot vector ei of size |V | which
has value 1 at index idxi and 0’s at other indices.
The lookup method for si is through a matrix
multiplication:

wi =W eei ∈ Rdw

Position Embedding. Word embedding is
good but sometimes not enough for our task. If
we only consider word embedding in our model,
the model will never know where exactly the
target T is located. One trivial solution is to add
a special begin of target token before sT1 and an
end of target token after sTm . While doing this,
models still know nothing about the position of
the target until it read the special tokens. Our
method is to maintain another position embedding
lookup table P e ∈ Rdp×2|L|, where dp is the di-
mension of a position vector, and |L| is maximum
length of all input sequences. Just like what we
do with word embedding, for each input sequence
{s1, ..., sT1−1, sT1 , ..., sTm , sTm+1, ..., sn}, we
lookup P e, and return a position vector sequence
{p1, ..., pT1−1, pT1 , ..., pTm , pTm+1, ..., pn} where
pi is the position vector of wi, and pi ∈ R2∗dp .
The purpose of position embedding is to represent
the location relation between si and target T . That
is to count the relative location loci1 from si to
sT1 and another relative location loci2 from si to
sTm by:

loci1 = i− T1
loci2 = i− Tm

Each relative location can be mapped into an in-
dependent column of P e. We count the indices of
the relative locations loci1 and loci2, respectively,
by:

idxi1 = loci1 + |L|

idxi2 = loci2 + |L|

To do the lookup process, we will make two one-
hot vectors of size 2 ∗ |L|. The first vector ei1 has
value 1 at index idxi1 and 0’s at other indices. The
second vector ei2 has value 1 at index idxi2 and 0’s
at other indices. The lookup method for si is:

pi1 = P eei1 ∈ Rdp

pi2 = P eei2 ∈ Rdp

pi = [pi1; pi2] ∈ R2∗dp

Notation [·; ·] means to concatenate two vectors.
Let’s do some summary, for an input sequence

seq = {s1, ..., sT1−1, sT1 , ..., sTm , sTm+1, ..., sn},
we will lookupW e and P e, and return a vector se-
quence {v1, ..., vT1−1, vT1 , ..., vTm , vTm+1, ..., vn}
where vi is the concatenation of word embedding
and position embedding:

vi = [wi; pi] ∈ Rdw+2∗dp

So vi can contain semantic information and target-
aware information simultaneously. We let W e and
P e be learned in the training process.

3.2 Sequence Attention Network
For many sequence modeling tasks, it is benefi-
cial to have access to future as well as past con-
text (Karpathy et al., 2015; Zhai et al., 2016). One
solution is the bidirectional mechanism (Schus-
ter and Paliwal, 1997; Graves and Schmidhuber,
2005; Graves et al., 2013). Bidirectional LSTM
extends standard LSTM by introducing a back-
ward LSTM, where its input sequence is in re-
versed order seqR = {sn, ..., s1}. We adopt bidi-
rectional LSTM in our work. For the ith word in
the input sequence, we count its forward hidden
state

−→
hi by standard LSTM, and its backward hid-

den state
←−
hi by backward LSTM. The final hidden

state hi is the concatenation of the forward and the
backward hidden states:

hi = [
−→
hi ;
←−
hi ] ∈ RB

After counting all hidden states from BiLSTM
H = {h1, ..., hT1−1, hT1 , ..., hTm , hTm+1, ..., hn},
we want to calculate a fixed size sequence repre-
sentation r. Attention network is to give each can-
didate a weight that tells how important it is to a
given condition, and count the weighted sum of
the candidates. Here, vectors in H are our candi-
dates, target T is our condition, and the weighted



sum of each vector in H is our sequence repre-
sentation r. With attention, target T can focus on
more important parts of the context. For an in-
put sequence “the food is good, but the service is
bad”, target “food” and target “service” will fo-
cus on different parts of the sequence, and gener-
ate different sequence representation r. We adopt
the concatenation manner (Bahdanau et al., 2014)
to count the attention scores, which considers both
candidates and the given condition by:

βi = UT
a tanh(Wa[hi; tr] + ba),

where hi is the hidden state of the ith word, βi is
its attention score, and Ua,Wa and ba are atten-
tion parameters to learn. tr is the target represen-
tation. We will describe how to get tr with target
attention networks in Section 3.3. After counting
{β1, ..., βn}, we use a softmax function to make
them sum of 1:

αi =
exp(βi)∑n
j=1 exp(βj)

Lastly, we count the weighted sum of H by:

sH =
n∑

i=1

αihi ∈ RB

It is beneficial to split the sequence according
to the target T in targeted sentiment analysis (Vo
and Zhang, 2015; Tang et al., 2016a; Zhang et al.,
2016; Liu and Zhang, 2017). We splitH to get left
context HL = {h1, ..., hT1−1} and right context
HR = {hTm+1, ..., hn}. H,HL, andHR will have
its own attention network and parameters. We can
get three weighted sum sH , sHL

, and sHR
from

these attention networks, and the sequence repre-
sentation r is the concatenation of them:

r = [sH ; sHL
; sHR

]

3.3 Target Attention Network
We will describe how to get the target representa-
tion tr here. We have hidden states of target words
HT = {hT1 , ..., hTm} ∈ RB×m produced from
BiLSTM, and want to get a fixed size tr from HT ,
where target length m varies from sequence to se-
quence. Unlike the models mentioned in related
work which use the average of HT as tr, we let
the model to focus on more important parts of tar-
get T by applying attention on HT . We introduce
two different kinds of target attention network.

Fully-Connected Layers (FC). First type of
the target attention is to extract feature fromHT it-
self. We count the attention weight vector through
two fully-connected layers with tanh non-linear
activation function between them, and HT as in-
put:

β =W T
2 tanh(W1HT + b1) + b2,

where β ∈ Rm is the attention weight vector,
W1 ∈ Rl×B, b1 ∈ Rl,W2 ∈ Rl, b2 ∈ R are the
parameters to learn, and l is the output size of the
first layer. Then we can count the normalized at-
tention weights α ∈ Rm by a softmax function:

αi =
exp(βi)∑m
j=1 exp(βj)

The target representation tr can be counted by:

tr = HTα ∈ RB

Factorization Machine (FM). Second type of
the target attention utilizes the factorization ma-
chine. FM is a popular method in recommender
systems (Rendle, 2010). It extracts interactions
between variables using factorized parameters.
For an input vector x ∈ Rd, FM not only applies
linear regression to x but models the relationship
between each dimension in x. The formula of FM
of degree deg = 2 is:

FM(x) = w0+

d∑
i=1

wixi+

d−1∑
i=1

d∑
j=i+1

〈vi, vj〉xixj ,

where the learned parameters are bias w0 ∈ R,
linear regression weight vector w ∈ Rd, and the
dimension embedding lookup table V ∈ Rk×d. A
column vi within V describes the ith variable with
k factors. Notation 〈·, ·〉 is the dot product of two
vectors of size k:

〈vi, vj〉 =
k∑

f=1

vi,f · vj,f

To get vi, we lookup V with an one-hot vector ei ∈
Rd, which has value 1 at index i and 0’s at other
indices:

vi = V ei ∈ Rk

We use the prediction FM(·) as our target atten-
tion weights, so each target hidden state hTi will
count its weight by:

βTi = FM(hTi)



Then a softmax function is used to make the
summation of attention weights equal to 1:

αTi =
exp(βTi)∑m
j=1 exp(βTj )

Finally, the target representation tr is counted by:

tr =

m∑
i=1

αTihTi ∈ RB

3.4 Model Training and Inferring
In Section 3.2, we describe the method to get se-
quence representation r. We use a softmax clas-
sifier to predict probability distribution p ∈ RC of
C sentiment categories. The classifier takes r as
input, and Wp and bp are parameters to learn:

p = softmax(W T
p r + bp) ∈ RC

The model is trained in a supervised manner by
minimizing the cross entropy between prediction
and true label, whose loss function is given below:

L(θ) = −
∑

(x,y)∈D

∑
c∈C

yclog(pc),

where θ are all learned parameters in the model,
D means all training instances, each x contains
an input sequence seq and a target T to count p,
and each y ∈ RC is an one-hot vector where in-
dex of true sentiment class is 1. During inference,
we choose the index with maximum value in p as
predicted result ŷ:

ŷ = argmax p

4 Experiments

4.1 Experimental Setting
We conduct experiments on four public datasets,
as shown in Table 1. The first two are from Se-
mEval 2014 (Pontiki et al., 2014), containing re-
views of restaurant domain (Restaurant) and lap-
top domain (Laptop), which are widely used in
previous works. The third one is a collection of
tweets (Twitter), collected by Dong (2014). The
last one is also a twitter collection (Z-Dataset),
collected by Zhang (2016), which includes the
MPQA corpus and the Mitchell’s (2013) corpus.

Same as previous works, we remove a few ex-
amples having the “conflict” sentiment class for
the first two datasets. We use 300-dimensional

Dataset #Positive #Neutral #Negative

Restaurant Train 2164 633 805
Test 728 196 196

Laptop Train 987 460 866
Test 341 169 128

Twitter Train 1561 3127 1560
Test 173 346 173

Z-Dataset
Train 2416 4689 2384
Dev 255 509 272
Test 294 581 295

Table 1: Details of the experimental datasets

word vectors1 pretrained by GloVe (Pennington
et al., 2014) as the initial word embedding for the
first two datasets, and 200-dimensional word vec-
tors2 for the last two datasets. We compare our
model with the following methods:

Feature Engineering Based. Featured-SVM
(Kiritchenko et al., 2014) extracts target features,
surface features, lexicon features and parsing fea-
tures. A SVM classifier is used to classify the sen-
timent polarity. Target-dep (Vo and Zhang, 2015)
uses five pooling functions to extract features for a
given target. They firstly split a sentence into three
sections, including the target, its left contexts, and
its right contexts.

Neural Network Based. AdaRNN (Dong et al.,
2014) leverages the results from dependency pars-
ing trees. Recursive neural networks are used
for the final prediction. TC-LSTM (Tang et al.,
2016a) uses a forward LSTM and a backward
LSTM to encode the information. They concate-
nate the last hidden states of both LSTMs for the
sentiment prediction. GRNN (Zhang et al., 2016)
also encodes the input sequence with a bidirec-
tional recurrent neural network. They use a gated
mechanism to concatenate the target reprsentation
and the representation of its context.

Attention-Based. MemNet (Tang et al., 2016b)
applies multiple time attentions on the word em-
bedding. The output of the last attention is used for
the sentiment prediction. AB-LSTM (Yang et al.,
2017) compares two types of attention scores: dot
products and bilinear terms. BILSTM-ATT-G (Liu
and Zhang, 2017) applies attention to the left con-
text and the right context according to a target.
They combine the outputs of multiple attentions
with a gated mechanism similar to GRNN. IAN
(Ma et al., 2017) averages a target and its context
to count the attention weights for each other. RAM
(Chen et al., 2017) borrows the idea from Mem-

1glove.42B.300d
2glove.twitter.27B



Restaurant Laptop Twitter Z-dataset
Model Acc F1 Acc F1 Acc F1 Acc F1
Featured-SVM 0.8016 - 0.7049 - 0.6340† 0.6330† - -
AdaRNN - - - - 0.6630 0.6590 - -
Target-dep - - - - 0.7110 0.6990 - -
TC-LSTM 0.7800† 0.6673† 0.7183† 0.6843† 0.7150 0.6950 - -
MemNet 0.8095 - 0.7237 - 0.6850† 0.6691† - -
GRNN - - - - - - 0.7196 0.6955
AB-LSTM - - - - 0.7260 0.7220 - -
BILSTM-ATT-G - - - - 0.7360 0.7210 0.7500 0.7230
IAN 0.7860 - 0.7210 - - - - -
RAM 0.8023 0.7080 0.7449 0.7135 0.6936 0.6730 - -
TAN-FC 0.8214 0.7486 0.7492 0.7098 0.7399 0.7274 0.7573 0.7350
TAN-FC-PE 0.8277 0.7509 0.7570 0.7158 0.7471 0.7312 0.7556 0.7322
TAN-FM 0.8214 0.7444 0.7540 0.7137 0.7486 0.7360 0.7564 0.7320
TAN-FM-PE 0.8223 0.7499 0.7586 0.7193 0.7399 0.7283 0.7641 0.7399

Table 2: Final results of proposed target attention networks (TAN). FC and FM are two types of target atten-
tion. Postfix ‘PE’ means to consider position embedding as input features. Compared results are extracted from
corresponding papers, the ones with ‘†’ are not reported in original papers but reproduced by Chen (2017).

Net. The difference is they apply multiple time at-
tentions on the hidden states of a BiLSTM, rather
than apply attention on the word embedding.

4.2 Evaluations & Results

We use two metrics to evaluate our performance.
The first metric is the accuracy, which has been
reported in all previous works, directly telling
how well the model does. The other metric is
the macro-F1 score, since all four experimental
datasets are imbalanced, macro-F1 score provides
another point of view to show how well the model
does among all classes. We report the performance
of the proposed target attention network (TAN),
including two types of target attention: FC (TAN-
FC) and FM (TAN-FM), described in Section 3.3.
We also report the results considering position em-
bedding as input features (with postfix ‘PE’) and
the ones which only use word embedding as in-
put features (without postfix ‘PE’). The results are
shown in Table 2. Our approach outperforms all
compared methods on all four datasets.

Let’s take a look at the results. Feature en-
gineering based methods such as Featured-SVM
and Target-dep are mostly not comparable to neu-
ral network based methods. These methods de-
pend on external resources like sentiment lexi-
cons, which may lower its flexibility for languages
with less resources. AdaRNN faces the same prob-
lem since their results are highly depending on the
performance of parsing trees.

TC-LSTM and GRNN use neural networks to
encode sequence. Nevertheless, the absence of at-
tention mechanism makes their performances infe-
rior to attention-based methods. MemNet applies

multiple time attentions, but the temporal informa-
tion is weaker as they doesn’t use any sequence
encoder. RAM not only applies attention multi-
ple times but uses a BiLSTM as the sequence en-
coder. Their performance is the best in the com-
pared methods. While they average target as the
initial attention query, which may dilute the infor-
mative words among target. Our target attention
networks alleviate this problem, which makes our
approachs surpass theirs. We have about 2% accu-
racy gain and 4% F1 score gain on the restaurant
reviews, 1% accuracy gain and 0.5% F1 score gain
on the laptop reviews, and 5% accuracy gain and
6% F1 score gain on the twitter dataset.

The other methods with attention mechanism
exist the same problem of the target representa-
tion. AB-LSTM and BILSTM-ATT-G both use the
mean of the target as the query of sequence atten-
tion. IAN uses both the mean of a target and its
context to count attention weights, which may en-
counter more information dilution. Our approach
outperforms these methods on all datasets, reach-
ing the latest state-of-the-art on these benchmarks.

4.3 Effects of Target Attention Network

As mentioned before, we believe that simply av-
erage target words may hurt performance be-
cause informative words will be overwhelmed by
a large number of meaningless words, especially
for longer targets. We want to know exactly how
target attention network affects performance when
target length varies. We use Z-dataset here be-
cause it contains more longer targets than other
datasets. To show the pure effects of target atten-
tion network, we remove position embedding in



this experiment. We only report the performance
of FM type target attention here for succinctness.

In Figure 2, we show the accuracy for the model
with and without target attention. It is straightfor-
ward to see that with target attention (green line),
we can always get equal or better accuracy than
the one without target attention (yellow line). One
interesting thing is that the accuracy gain with tar-
get attention (red dashed line) has an increasing
trend. Specifically, the performance gap between
the model with target attention and the one with-
out target attention becomes larger as the target
length grows. This finding shows that simply av-
erage target words can result in poor performance
when facing longer targets. Target attention net-
works can alleviate this problem by emphasizing
informative parts in the target.

Next, we show how target attention influences
the result of subsequent sequence attention. We
pick a testing example from the restaurant reviews,
as illustrated in Figure 3. The input sequence is
“The fish is fresh but the variety of fish is nothing
out of ordinary”, the target is “variety of fish”,
and its sentiment polarity is negative. Colors in
the figure represent the weights of sequence atten-
tion. Words with darker color means the model
pays more attention on them. The target attention
may attend on different parts of the target. The
curves on the target “variety of fish” represent the
intensity of target attention weights. In the first
row, word “fish” of the target gets the most of
the target attention weight, then sequence atten-
tion will focus on “fresh” as its most important
context, while “fresh” can lead to the wrong an-
swer. In the second row, word “variety” of the
target gets the most of the target attention weight,
the later sequence attention can capture more re-
lated context “nothing out of ordinary”, and make
the correct prediction. The attention results of se-
quence can change significantly when focusing on
different parts of the target, which verifies the ne-
cessity and the importance of the target attention.

4.4 Effects of Position Embedding

To demonstrate the effects of the position embed-
ding, we remove target attention networks in this
experiment. Figure 4 is a testing example picked
from the restaurant reviews. The input sequence is
“the food was definitely good, but when all was
said and done, i just couldn’t justify it for the
price”, the target is “price”, and the sentiment po-

Figure 2: Accuracy w/ & w/o target attention. Models
with target attention consistently outperform the ones
without target attention, especially for longer targets.

larity of “price” is negative. Again, colors in the
figure represent the sequence attenton weights of
each word. The first row is the model without po-
sition embedding, we can see it spends half of the
attention weights on “definitely good”. However,
“definitely good” can lead to wrong sentiment po-
larity for the target “price”. Although it puts 0.2
weight on “but”, which tries to twist the semantic
intent, the intensity is not enough so the prediction
is still incorrect. Now we look at the second row,
with position embedding, our model can capture
more relative parts “could n’t justify”, which actu-
ally determines the sentiment ploarity of the target
“price”. An interesting finding is that attention-
based models tend to put most of the weights on
obvious sentiment words such as good and bad.
This phenomenon can sometimes hurt the perfor-
mance when contradictory sentiment words ap-
pear at the same time (e.g. “The food is good
but the service is bad”). Position embedding pro-
vides distinct information besides sentiments, so
our model can consider both features and extract
more complicated opinion for targets, just as dis-
criminative phrase “could n’t justify” is captured
in our case.

4.5 Ablation Study

To further demonstrate the adventages of the pro-
posed methods, we execute ablation study. We ex-
periment on all four datasets, with removements of
target attention or position embedding or both of
them. We list the results of FM type target atten-
tion here for comparison. Table 3 shows the accu-
racy results and table 4 show the macro-F1 results.



Figure 3: Attend on different target words will lead to different sequence attention result and prediction. If target
attention attends on word “fish” of the target, sequence attention will focus on context “fresh”. If target attention
attends on word “variety” of the target, sequence attention will focus on context “nothing out of ordinary”.

Figure 4: Attention weights w/ & w/o position embedding (PE). Without position embedding, the sequence atten-
tion will focus on context “definitely good” which leads to wrong prediction. The model with position embedding
can extract more complicated opinion for the target, just as “could n’t justify” in our case.

Accuracy w/o PE w/ PE

Restaurant w/o TA 0.7959 0.8071
w/ TA 0.8214 0.8223

Laptop w/o TA 0.7116 0.7288
w/ TA 0.7540 0.7586

Twitter w/o TA 0.7153 0.7168
w/ TA 0.7486 0.7399

Z-Dataset w/o TA 0.7291 0.7419
w/ TA 0.7564 0.7641

Table 3: Accuracy of ablation study. TA means target
attention, PE means position embedding. We list the
results of FM type target attention for comparison.

There is about 2.5% to 4% accuracy gain and a 3%
to 4% F1 score gain for target attention, which is
the main reason why our work outperforms pre-
vious works. Position embedding can further im-
prove performance by about 0.5% to 1%. Position
embedding can obtain higher performance gain of
1% to 2% when target attention is absent.

5 Conclusions

We propose a novel target attention network to
concentrate on important parts of the target. Ex-
periments show that target attention can boost per-
formance especially for longer targets, and target
attention has a great effect on later context atten-
tion. We also introduce a novel target-aware posi-
tion embedding to model the location relation be-
tween the target and its context. Position embed-

Macro-F1 w/o PE w/ PE

Restaurant w/o TA 0.7025 0.7245
w/ TA 0.7444 0.7499

Laptop w/o TA 0.6745 0.6837
w/ TA 0.7137 0.7193

Twitter w/o TA 0.6965 0.7004
w/ TA 0.7360 0.7283

Z-Dataset w/o TA 0.7005 0.7184
w/ TA 0.7320 0.7399

Table 4: Macro-F1 scores of ablation study. TA means
target attention, PE means position embedding. We list
the results of FM type target attention for comparison.

ding provides distinct information from semantic
meanings, which helps our model to extract more
complicated opinion for targets. Our target at-
tention network outperforms all state-of-the-art on
four public benchmarks, the experimental results
demonstrate our findings. The concepts of mold-
ing target words non-linearly and representing the
location relation between a target and its context
can easily apply to other entity-based tasks, such
as relation classification, which is a potential di-
rection for future works.
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